A scalable colloidal approach to prepare hematite films for efficient solar water splitting.
نویسندگان
چکیده
The development of technologically and economically viable strategies for large-scale fabrication of photoelectrodes is crucial for solar H2 production from photoelectrochemical water splitting. Herein, a low-cost and facile colloidal electrophoretic deposition approach was developed for scalable fabrication of hematite (α-Fe2O3) films. Large-sized uniform films (e.g. 80 mm × 70 mm) with tailored thickness and nanostructures can be easily prepared on conductive substrates within 2 minutes. The resultant films showed a high photocurrent of ∼1.1 mA cm(-2) at 1.23 V(RHE) under standard AM 1.5G illumination, which is among the highest reported values achieved on hematite films prepared using other complex colloidal approaches. The present work will pave a new avenue for fabrication of efficient photoelectrodes toward practically viable solar H2 production.
منابع مشابه
Enhanced photocurrent density of hematite thin films on FTO substrates: effect of post-annealing temperature.
Fluorine doped tin oxide (FTO) is widely used as a substrate in the synthesis of a photo-reactive semiconductor electrode for solar water splitting. The hematite film on the surface of the FTO substrate annealed at 700 °C showed an enhanced photocurrent value with a maximum photocurrent of 0.39 mA cm(-2) at 1.23 V vs. RHE under 1 sun illumination. This is a much enhanced photocurrent value of t...
متن کاملSurface Engineered Doping of Hematite Nanorod Arrays for Improved Photoelectrochemical Water Splitting
Given the narrow band gap enabling excellent optical absorption, increased charge carrier density and accelerated surface oxidation reaction kinetics become the key points for improved photoelectrochemical performances for water splitting over hematite (α-Fe2O3) photoanodes. In this study, a facile and inexpensive method was demonstrated to develop core/shell structured α-Fe2O3 nanorod arrays. ...
متن کاملTiO2 and Fe2O3 films for photoelectrochemical water splitting.
Titanium oxide (TiO2) and iron oxide (α-Fe2O3) hematite films have potential applications as photoanodes in electrochemical water splitting. In the present work TiO2 and α-Fe2O3 thin films were prepared by two methods, e.g., sol-gel and High Power Impulse Magnetron Sputtering (HiPIMS) and judged on the basis of physical properties such as crystalline structure and surface topography and functio...
متن کاملElectrodeposited Co-Pi Catalyst on α-Fe2O3 Photoanode for Water-Splitting Applications
Optoelectronic properties of hematite (α-Fe2O3) as a photoanode and the required over-potential in photo-assisted water splitting has been improved by presence of Co-Pi on its surface. In order to increase the lifetime of the photogenerated holes and lower the applied bias, cobalt-phosphate (Co-Pi) on nanostructured α-Fe2O3 by electrodeposition was de...
متن کاملSilicon/hematite core/shell nanowire array decorated with gold nanoparticles for unbiased solar water oxidation.
We report the facile fabrication of three-dimensional (3D) silicon/hematite core/shell nanowire arrays decorated with gold nanoparticles (AuNPs) and their potential application for sunlight-driven solar water splitting. The hematite and AuNPs respectively play crucial catalytic and plasmonic photosensitization roles, while silicon absorbs visible light and generates high photocurrent. Under sim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 15 29 شماره
صفحات -
تاریخ انتشار 2013